Problem Statement
Pattern:
Trivial Solution ❌
public static ArrayList<Integer> findLeastGreater(int n, int[] arr) {
// code here
ArrayList<Integer> res = new ArrayList<>(n);
for(int i = 0; i < n ; i++) {
int min = -1;
for(int j = i+1 ; j < n ; j++)
min = (arr[j] > arr[i] && (min == -1 || arr[j] < min)) ? arr[j] : min;
res.add(min);
}
return res;
}
TC : n^2
SC : n
Optimal Solution
public ArrayList<Integer> findLeastGreater(int n, int[] arr) {
LinkedList<Integer> res = new LinkedList<>();
TreeSet<Integer> set = new TreeSet<>();
for (int i = n - 1; i >= 0; i--) {
set.add(arr[i]);
Integer greater = set.higher(arr[i]);
if (greater == null) res.addFirst(-1);
else res.addFirst(greater);
}
return new ArrayList<>(res);
}
TC : nlogn
SC : ` n
- We iterate over
arr[i]
from the end, finding the inorder successorset.higher(arr[i])
, and adding it to the list 🤷 - Why
TreeSet
?- It is a self balancing bst, so the complexity cannot be
n^2
even if the array is in descending order
- It is a self balancing bst, so the complexity cannot be