Problem Statement
Pattern:
Solution
public long maxProduct (int[] nums, int n){
long prefixProduct = 1, suffixProduct=1, maxProduct = Long.MIN_VALUE;
// prefixProduct fwds
for (int i = 0; i < n; i++) {
prefixProduct *= nums[i];
if(prefixProduct == 0) prefixProduct =1;
maxProduct = Math.max(maxProduct, prefixProduct);
}
// suffixProduct reverse
for (int i = n-1; i >= 0 ; i--) {
suffixProduct *= nums[i];
if(suffixProduct == 0) suffixProduct = 1;
maxProduct = Math.max(maxProduct, suffixProduct);
}
return maxProduct;
}
Notes
- let’s assume that there can only be a even number of negative integers.
- then its simple kadane’s algorithm, where we find the
runningProduct
, updatemaxProduct
as we do it, and resetrunningProduct
to1
if it becomes0
- the complication here is that there can be odd number of negative integers in the array, or any subarray between 2 zeroes
- so the
maxProduct
could be discovered by removing the first negative integer or the last one - this is the only edge case that isnt being covered, but its present for every subarray, after a zero since the maxProduct uptill then gets reset
- so the simple solution is to find the
maxProduct
once forwards using runningprefixProduct
, and once backwards using runningsuffixProduct
. - and compare those 2
- so the
this can also be done in a single for loop
public long maxProduct (int[] nums, int n){
long prefixProduct = 1, suffixProduct=1, maxProduct = Long.MIN_VALUE;
for (int i = 0; i < n; i++) {
prefixProduct *= nums[i];
suffixProduct *= nums[n - (i+1)];
// update maxProduct first, in case all elements are zeroes
maxProduct = Math.max(maxProduct, Math.max(prefixProduct, suffixProduct));
if(prefixProduct == 0) prefixProduct =1;
if(suffixProduct == 0) suffixProduct =1;
}
return maxProduct;
}
only twist here is that to find the corresponding reverse pointer we use n - (i+1)