Problem Statement

Pattern: Related: 1143. Longest Common Subsequence


Solution

Integer[][] cache;
 
int dp(char[] edit, char[] target, int n1, int n2) {
	// base condition
	if (n1 < 0 || n2 < 0) return (n1 >= n2) ? n1 + 1 : n2 + 1;
	if(cache[n1][n2] != null) return cache[n1][n2];
 
	// same character
	if (edit[n1] == target[n2]) return cache[n1][n2] = dp(edit, target, n1 - 1, n2 - 1);
 
 
	int replace = dp(edit, target, n1 - 1, n2 - 1) + 1;
	int insert = dp(edit, target, n1, n2 - 1) + 1;
	int delete = dp(edit, target, n1 - 1, n2) + 1;
 
	return cache[n1][n2] = Math.min(replace, Math.min(insert, delete));
}
 
 
public int minDistance(String word1, String word2) {
	char[] edit = word1.toCharArray();
	char[] target = word2.toCharArray();
	cache = new Integer[edit.length + 1][target.length + 1];
	return dp(edit, target, edit.length - 1, target.length - 1);
}

TC : SC :

Notes

We have 2 strings, edit, we pick anyone that we will transform, and target, the other one we transfer into. If we,

  • Shift pointers of both fwd
    • add 1 to the solution character has been replace

Relevant

Different types of edit distance allow different sets of string operations. For instance:

The Levenshtein distance between “kitten” and “sitting” is 3. A minimal edit script that transforms the former into the latter is:

  1. kitten → sitten (substitute “s” for “k”)
  2. sitten → sittin (substitute “i” for “e”)
  3. sittin → sitting (insert “g” at the end)

LCS distance (insertions and deletions only) gives a different distance and minimal edit script:

  1. kitten → itten (delete “k” at 0)
  2. itten → sitten (insert “s” at 0)
  3. sitten → sittn (delete “e” at 4)
  4. sittn → sittin (insert “i” at 4)
  5. sittin → sitting (insert “g” at 6)

for a total cost/distance of 5 operations.