Problem Statement
Count of subsets with sum equal to X - GeeksforGeeks
Pattern:
Brute Force Solution
public int count (int[] nums, int n, int target){
if(n < 0) return target == 0 ? 1 : 0;
if(target == 0) return 1;
if(nums[n] <= target)
return count(nums, n-1, target-nums[n]) +
count(nums, n-1, target);
return count(nums, n-1, target);
}
TC : SC :
Memoised
public static Integer[][] dp;
public int count(int[] nums, int n, int target) {
if (n < 0) return target == 0 ? 1 : 0;
if (target == 0) return 1;
if (dp[n][target] != null) return dp[n][target];
if (nums[n] <= target)
return dp[n][target] = count(nums, n - 1, target - nums[n]) +
count(nums, n - 1, target);
return dp[n][target] = count(nums, n - 1, target);
}
Iterative
public int count(int[] nums, int n, int k) {
// init dp
for (int i = 0, j=0; i < n + 1; i++) dp[i][j] = 1;
for (int j = 1, i = 0; j < k + 1; j++) dp[i][j] = 0;
for (int i = 1; i < n + 1; i++)
for (int j = 1; j < k + 1; j++)
if (nums[i-1] <= j)
dp[i][j] = dp[i - 1] [j - nums[i-1]] + dp[i - 1][j];
else dp[i][j] = dp[i - 1][j];
return dp[n][k];
}
understand iterative.. maybe
count of subsets considering curr (ith) element of value upto j =
count of subset upto i-th element having value complement to curr value
(because u can add curr element to all of them to reach j)
+
count of subsets upto ith element having value upto j