Problem Statement
Pattern: Related: Smallest Distinct Window
Solution
public String minWindow(String s, String t) {
// prepare dict
Map<Character, Integer> dict = new HashMap<>();
for(char c : t.toCharArray()) dict.put(c, dict.getOrDefault(c, 0) + 1);
int required = dict.size(), formed = 0; // required : no. of uniqe ch's in string
int l = 0, r = 0;
int[] ans = {-1, l, r}; // size, l, r
Map<Character, Integer> window = new HashMap<>();
// sliding window
while(r < s.length()) {
// add char to window
char curr = s.charAt(r);
window.put(curr, window.getOrDefault(curr, 0) + 1);
if(dict.containsKey(curr) && dict.get(curr).equals(window.get(curr))) formed++;
// contract window till invalid
while(l <= r && formed == required) { // check if valid window
char prev = s.charAt(l);
// update ans if window smaller
if(ans[0] == -1 || r - l + 1 < ans[0]) {
ans[0] = r - l + 1;
ans[1] = l;
ans[2] = r;
}
// remove prev char from window
window.put(prev, window.get(prev)-1);
// update formed
if (dict.containsKey(prev) && window.get(prev).intValue() < dict.get(prev).intValue())
formed--;
// shift l fwd
l++;
}
// shift r fwd
r++;
}
return ans[0] == -1 ? "" : s.substring(ans[1], ans[2] + 1);
}
TC : SC :
Notes
- This is basically a slightly complex sliding window problem, a window which needs to know what is the freq of each character in it
window
, and the required minimum freq of each characterdict
. - We keep expanding a window, and once it is valid (
formed == required
) we start contracting it and updating the answer till its invalid (formed != required
) - We return minimum substring
Optimised Solution
filtered_S
is the S
string without the extra characters not present in T
. Checkout the solution