Problem Statement
Maximum Absolute Sum of Any Subarray - LeetCode
You are given an integer array nums
. The absolute sum of a subarray [numsl, numsl+1, ..., numsr-1, numsr]
is abs(numsl + numsl+1 + ... + numsr-1 + numsr)
.
Return the maximum absolute sum of any (possibly empty) subarray of nums
.
Note that abs(x)
is defined as follows:
- If
x
is a negative integer, thenabs(x) = -x
. - If
x
is a non-negative integer, thenabs(x) = x
.
Example 1:
Input: nums = [1,-3,2,3,-4]
Output: 5
Explanation: The subarray [2,3] has absolute sum = abs(2+3) = abs(5) = 5.
Example 2:
Input: nums = [2,-5,1,-4,3,-2]
Output: 8
Explanation: The subarray [-5,1,-4] has absolute sum = abs(-5+1-4) = abs(-8) = 8.
Constraints:
1 <= nums.length <= 105
-104 <= nums[i] <= 104
Pattern: Pattern Kadane’s Algorithm
Solution
// find both minSum and maxSum > return max(abs(min, max))
public static int maxAbsoluteSum (int[] nums){
int minSum = Integer.MAX_VALUE, currMin = Integer.MAX_VALUE,
maxSum = Integer.MIN_VALUE, currMax = Integer.MIN_VALUE;
for (int num : nums) {
if(currMin > 0) currMin = num;
else currMin += num;
if(currMax < 0) currMax = num;
else currMax += num;
// update max and min
minSum = Math.min(currMin, minSum);
maxSum = Math.max(currMax, maxSum);
}
return Math.max(Math.abs(minSum), maxSum);
}
Notes
- The questions will take the subarray that you give it and return the subarray with the greatest absolute sum i.e.
Math.abs(sum)
- This means that sum could be negative or positive.
- So find the max positive sum subarray, and smallest negative subarray
- See which has greater absolute value
- Return absolute value
Return the maximum absolute sum of any (possibly empty) subarray of nums.
- This is an attempt at bait, since a non-empty subarray will be the largest always, under no circumstances will an empty subarray return the greatest absolute value. So don’t bother incorporating empty subarray logic into your code
- If you are looking for minSum in a positive arrzay, it makes no sense to reset currMinsum to 0 if currMinsum > 0, since a positive currMinsum, will give a greater value, compared to 0 at the end, when supplied into the function
return Math.max(Math.abs(minSum), maxSum);
- This is an attempt at bait, since a non-empty subarray will be the largest always, under no circumstances will an empty subarray return the greatest absolute value. So don’t bother incorporating empty subarray logic into your code